Du lernst: Was das Skalarprodukt von Vektoren ist Wie man das Skalarprodukt zweier Vektoren berechnet Wie man den Winkel zweier Vektoren berechnet Wie man prüft, ob zwei Vektoren senkrecht (orthogonal) aufeinander stehen
A: WICHTIGE SÄTZE UND FORMELN
<u>Skalarprodukt</u> Zwei Vektoren werden so miteinander "verknüpft" (berechnet), dass als Ergebnis eine
(=Skalar) herauskommt. Dieses Ergebnis der Rechnung nennt mar
das
Koordinatenschreibweise:
Beispiel: $\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 5 \\ -3 \\ -3 \end{pmatrix}$
<u>Definition</u>
Winkel φ zwischen zwei Vektoren \vec{a} und \vec{b}
Gemeint ist damit immer der der beiden möglichen Winkel. φ ist also
immer
Formel:
Beispiel: $\vec{a} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 5 \\ -3 \\ -3 \end{pmatrix}$

6. Skalarprodukt und Größe von Winkeln

Orthogonalität zweier Vektoren \vec{a} und \vec{b}

Zwei Vektoren \vec{a} und \vec{b} heißen ______,

wenn sie einen Winkel von _____ einschließen. Man schreibt _____

Für \vec{a} und \vec{b} mit \vec{a} , $\vec{b} \neq \vec{0}$ gilt:

Beachte:

- 1) Für 0°< φ < 90° gilt $\vec{a} \circ \vec{b} > 0$ und für 90°< φ < 180° gilt $\vec{a} \circ \vec{b} < 0$
- 2) Es gelten folgende Rechengesetze:

 $\mathsf{KG} \colon \vec{a} \, \circ \vec{b} = \, \vec{b} \, \circ \vec{a}$

DG: $(\vec{a} + \vec{b}) \circ \vec{c} = \vec{a} \circ \vec{c} + \vec{b} \circ \vec{c}$

 $(r \cdot \vec{a}) \circ \vec{b} = r \cdot (\vec{a} \circ \vec{b})$

 $\vec{a} \circ \vec{a} \geq 0$

Warum macht das AG bei Vektoren keinen Sinn?

Beispiel:

- a) Prüfen Sie, ob die Vektoren $\vec{a} = \begin{pmatrix} 0 \\ 1,5 \\ -2 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix}$ senkrecht aufeinander stehen.
- b) Bestimmen Sie die fehlende Koordinate von $\vec{a} = \begin{pmatrix} 3 \\ -1 \\ 3 \\ 4 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 2 \\ b_2 \\ 2 \end{pmatrix}$ so, dass $\vec{a} \perp \vec{b}$.

B: BEGRÜNDUNGEN, HERLEITUNGEN

Was ist das Skalarprodukt?